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Abstract

A basic limitation in an earlier work on the axially ma%netized, ferrite loaded rectangular

guide has led to a detailed re-examination of this problem.

Both a series solution and a pertur-

bational technique are used to find dispersion curves and field patterns.

Introduction

By assuming

an ej(wt-Bz) degendence we are led
to the familiar >3

coupled equations
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Application of a technique described elsewhere
leads to a solution of the form3
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This yields a simple solution for the circular guide3,

For the rectangular guide we postulate a solution
of the form
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where each term satisfies (1), and the eight boundary
conditions are imposed on the series. There are no
relations of orthogonality between terms, but four
sets of coefficients can be expressed as functions of
the remaining four, This leads to an infinite dimen-
sional homogeneous system, and, by truncation, the
problem is reduced to finding the zeros of a complex
determinant.

Alternatively, it is seen that equations (1), to-
gether with the boundary conditions, decouple for B8=0,
giving pure TE or TM modes. In view of this fact we
write ghe fields in the guidg as
e, = ) fn(x,y)Bn » h, )
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and f = Zaien. Similar expressions are written for

0,
the remaining frequency dependent parameters.

The following equations are thus obtained:
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plus the conditions at the boundaries
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Use of Green's functions of electric and magnetic
type lead to general expressions for fi and g »
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The a: 's are obtained by applying Green's identity
to gfn’fn+2) or (gn,gn+2), depending on the type
of mode.
It can be shown that only powers of 82 enter in

the expression for £, as expected, and that h_ con-
tains odd powers of B when e_ contains even“ones
(quasi-TM modes) and vice versa (quasi-~TE modes). It
is obvious that the method is good only for quasi-TE,
-TM modes.

Solution

For the first method it was found that for n > 3
(i.e., e_,h_ approximated by more than 24 terms) the
values of the resulting determinant are very unstable
as a result of imaginary K_'s leading to hyperbolic
functions. For nz2 (8 x 8 determinant) the zeros are
well defined, but the accuracy is poor and cannot be
improved.

In the perturbational method one can write general
expressions for any arbitrary term of order n in
terms of the previous ones, On the other hand, conver-
gence for only a limited range of B is expected,
since even for the dielectric guide
1/2
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and f is given as a series of powers of 82 for
BZ < k2 . However this range can be extended by ana-

lytic coéntinuation.

Note that this difficulty does not exist in the
dielectric guide if we express f2 = £2(g2), but in our
problem both £2 and f appear.

Results

Dispersion curves for the lowest modes of the rec-
tangular guide as shown on Fig. (1) have been computed
from both methods. In the series solution, the
quasi-TE/TM modes are easily identified for B
Other modes are under investigation.

small,

Figure 1 shows the dispersion curves for the
quasi-TE;, modes, as obtained from the perturbational
equations, with
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The series turns out to be alternating, thus pro-
viding error bounds.

The region of convergence is
for Hdc
becomes fairly large (B ~ 5 rad/cm) above resonance.
Within this region convergence is fast; for example,
for B = 2 rad/em (H,, = 0), f =
and even for B = 2.4 rad/cm the error is 0.0l Ghz.

This first region of convergence increases for higher

order modes.

wzu €

The parabolic approximation for a, =
- 82/Q1+x)
of f accurate to better than a 1% through the whole
region of convergence (This expression is equivalent

to mzuos - B2 = (n/a)2 for the dielectric guide).

Figure 2 shows the rotating nature of the trans-
verse H field even for a situation close to cutoff.
The transverse E field is very similar to that of
the pure TElO mode.

The fields at the walls of the guide are not
plotted since the trigonometric series giving them
do not converse there to the real values (Gibbs'
phenomenon).

Discussion

The perturbational method is capable of being ex-
tended to wider ranges of B and to other geometries
in a direct manner. On the other hand, for modes
other than quasi-TE/TM we must return to a consider-
ation of the first method outlined above.

0 < B <~ 2,6 rad/cm
= 0 , decreases as we approach resonance, and

7.2542 *+ 0.0005 Ghz,

(dotted line) was found to providé a value

Both can be extended to include ferrite losses by
a straightforward modification of the ferrite param-
eters,
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