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AbstFact

A basic limitation in an earlier work on the axially ma netized,
f

ferrite loaded rectangular
guide has led to a detailed re-examination of this problem. Both a series solution and a pertur-
bational technique are used to find dispersion curves and field patterns.

(1)

Introduction

By assuming an ej(@-Bz) de endence we are led

to the familiar coupled equations !,3

(,v~ + al)ez = - jBkf~hz

(V: + a2)hz = j6kf&ez
1

Application of a technique described elsewhere

leads to a solution of the form3

e ❑ U
1 + u2, hz = qlul + q2u2,z

where

@:+ fJ12*)ul ~ = o .
, Y

This yields a simple solution for the circular guide?~b

For the rectangular guide we postulate a solution
of the form

U1,2= ~(A~’2cos~+ B~’2sin ~)(C~’2cosk~’2y

+ ~~’2sink~’2y)

where each term satisfies (l), and the eight boundary
conditions are imposed on the series. There are no

relations of orthogonality between terms, but four

sets of coefficients can be expressed as functions of

the remaining four. This leads to an infinite dimen-

sional homogeneous system, and, by truncation, the

problem is reduced to finding the zeros of a complex
determinant.

Alternatively, it is seen that equations (l), to-
gether with the boundary conditions, decouple for (3=0,

giving pure TE or TM modes. In view of this fact we

write ~he fields in the guid~ as

e z= ~fn(x,y)~n , hz= ~gn(x,y)13n
n.o n=O

and f = ~a~~n. Similar expressions are written for

the remai~ing frequency dependent parameters.

The following equations are thus obtained:

al al
n-1

(V~+ao )fn+~aif
n-i = -j 1 a~gn-i-~

i=l i.o

‘2
n-1

(V~ao )gn+ ~ ai
‘2

gn_ i = j 1 a~fn_i-~ ,
i=l i.1)

plus the conditions at the boundaries

fn=o ,

n-2 agn-i_2 n-1 af

-j ~ a:’ ~
n-i-1 ●

+ j ~ a~~ i~oaial ~ = O.
i.o i= O

Use of Green’s functions of electric and

type lead to general expressions for fi and

fi ❑ ~~ F1 sin ~sin ~

nm mn

gi = ~~G;ncos~cos~ .
nm

The a; ‘s are obtained by applying Green’s
to (f *fn+* ) or (gn,gn+2), depending on
of modes n

It can be shown that only powers of ,82

the expression for f, as expected, and that

magnetic

gi 9

identity

the type

enter in

h- con-

tains odd powers of @ when ez contains even”ones
(quasi-TM modes) and vice versa (quasi-TE modes). It

is obvious that the method is good only for quasi-TE,
-TM modes.

Solution

For the first method it was found that for n > 3

e ,h approximated by more than 24 terms) the
~&~ of tife resulting determinant are very unstable

as a result of imaginary Kn ‘s leading to hyperbolic

functions. For n=2 (8 x 8 determinant) the zeros are
well defined, but the accuracy is poor and cannot be

improved.

In the perturbational method one can write general

expressions for any arbitrary te,rm of order n in

terms of the previous ones. On the other hand, conver-

gence fop only a limited range of 6 is expected,

since even for the dielectric guide

OJ%OEO=k~+62 ,
% 2 1/2

f%-[1+ (# 1
c

and f is given as a series of powers of $2 for
B’2<k’2. However this range can be extended by ana-

lytic c&tinuationl.

Note that this difficulty does not exist in the

dielectric guide if we express fz = f2(62), but in our

problem both fz and f appear.

Results

Dispersion curves for the lowest modes of the rec-

tangular guide as shown on Fig. (1) have been computed
from both methods. In the series solution, the

quasi-TE/TM modes are easily identified for B small.

Other modes are under investigation.

Figure 1 shows the dispersion curves for the

quasi-TE1o modes, as obtained from the perturbational
equations, with

f z: ~6 a~~n .

n=O
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The series turns out to be alternating, thus pro-
viding error bounds.

The region of convergence is O < $ < n, 2.6 rad/~m

for Hdc = O , decreases as we approach resonance, and

becomes fairly large (8 ~ 5 rad/cm) above resonance.

Within this region convergence is fast; for example,

for B = 2 rad/cm (Hdc = O), f = 7.2542 f 0.0005 Ghz,

and even for $ = 2.4 rad/cm the error is 0.01 Ghz.

This first region of conve~gence increases for higher

order modes.

The parabolic approximation for = &loEf
$2/(l+x) (dotted line) was found t>provide a value

of f accurate to better than a 1% through the whole
region of convergence (This expression is equivalent

to llJ21Joc - 62 = (n/a)2 for the dielectric guide).

Figure 2 shows the rotating nature of the trans-

verse H field even for a situation close to cutoff.

The transverse E field is very similar to that of
the pure TEIO mode.

The fields at the walls of the guide are not

plotted since the trigonometric series giving them
do not converse there to the real values (Gibbs’

Both can be extended to include ferrite losses by

a straightforward modification of the ferrite param-

eters.
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Discussion

The perturbational method is capable of being ex-

tended to wider ranges of B and to other geometries
in a direct manner. On the other hand, for modes
other than quasi-TE/TM we must return to a consider-

ation of the first method outlined above.
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